Guidelines for Grease Trap Design

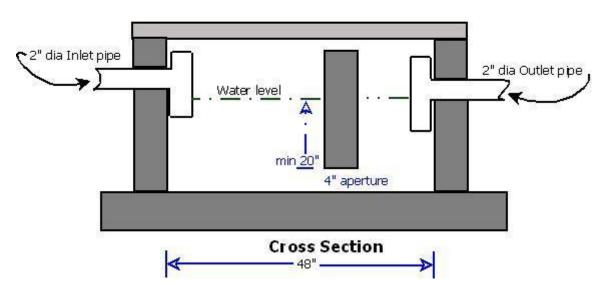
The common factor used among the several formulas used for designing grease trap sizes is the incoming flow rate. The fixture unit method assesses the number of fixtures (fixture load) that will discharge wastewater to the grease trap (International Plumbing Code, 2006). The table below provides the drainage fixture units for various fixture types:

Fixture Type	Drainage Fix-	Fixture Type	Drainage Fix-	
Automatic clothes washer, commercial	3	Laundry sink	2	
Automatic clothes washer, residential	2	Lavatory	1	
Bathtub	2	Shower	2	
Bidet	1	Service sink	2	
Combination sink and tray	2	Sink	2	
Dental lavatory	1	Urinal	4	
Dishwashing machine, domestic	2	Wash sink, each set of faucet	2	
Drinking fountain	0.5	Water closet, private or public 1.6 gpf		
Floor drain	2	Water closet, public >1.6 gpf 6		
Kitchen sink, domestic	2			

Table 1: Drainage Fixture Units (International Plumbing Code, 2006)

The capacity of the grease trap is therefore calculated as:

Step 1: Compile	design data		
Determine the type of fixtures and total the drain fixture units (Table 1)			
Total drainage fixture units, DFU _{total}			
Required detention time, HDT _{min}			
Liquid	depth, Dft		
Step 2: Dete	ermine the wastewater flow rate from Table 3 - International Plumbing		
Code			
Step 3: Multip	bly the flow rate (gpm) by the realistic peak discharge flow rate 0.7 – 0.8		
Step 4: Multip	bly the result at step 3 by the retention time between 15 to 30 minutes.		
Step 5: Calcu	late the required volume of grease trap, V _{gal}		
V _{gal} =	= Q _{gpm} x HDT _{min}		
•			


Table 2: Example of grease trap calculations

Fixture	gpm	Fixture	gpm
Load		Load	
1	3.0	12	28.6
2	5.0	13	29.4
3	6.5	14	30.2
4	8.0	15	31.0
5	15.0	16	31.8
6	17.4	17	32.6
7	19.8	18	33.4
8	22.8	19	34.2
9	24.6	20	35.0
10	27.0	25	38.0
11	27.8	30	42.0

Table 3: Estimating Water Demand (International Plumbing Code 2006)

Tables 2 and 3 provide guidance on the appropriate sizing of the grease traps which should be maintained at an appropriate frequency to prevent the discharge of grease from prolonged usage without cleaning. Operators of facilities are therefore advised to establish a maintenance scheduled which is supported by weekly inspections of the grease trap. A specimen grease trap is provided below for illustration purposes.

Specimen of Grease Trap Residential Grease Trap

